If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10r^2+10r-59=0
a = 10; b = 10; c = -59;
Δ = b2-4ac
Δ = 102-4·10·(-59)
Δ = 2460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2460}=\sqrt{4*615}=\sqrt{4}*\sqrt{615}=2\sqrt{615}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{615}}{2*10}=\frac{-10-2\sqrt{615}}{20} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{615}}{2*10}=\frac{-10+2\sqrt{615}}{20} $
| 10r^2+10r+6=0 | | (x-3)/5-2=-1 | | (-5)x(-4)X(-3)=180 | | 2.5=100-102/x | | 9x-10=9/x,x^2+1/x^2= | | 9x-10=9/x,x^2+1/x^2 | | 9x-10=9/x | | (11/4)x+3=300 | | x^2+x-0.24=0 | | 0=-16t^2+64t+144 | | t=-16t^2+64t+144 | | 4x-0.9=x | | H=-16t^2+25t+90 | | 4x-3x+3/12=1 | | 3(3-8x)=81 | | -155=-10x-5 | | 25=16(1.2)^2+40t | | 0.8=1.8X10n | | 0.18=1.8×10n | | -3p+4-5=4p-8 | | 25=-16(1.4)^2+40t | | 8+7k=7k | | 7^x+4=49^2x-1 | | 25=-16(1.2)^2+40t | | 25=-16(1.25)^2+40t | | 25=-16(2.50)^2+40t | | √-7y+8=y | | 25=-16t^2+40(2.50) | | 7(y+2)=-35 | | -12x+4=-7-16 | | 22=-3(2x+3) | | h=16(1.5^2)+40(1.5) |